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Abstract

In this paper we document that married individuals face a lower unemployment rate than their
single counterparts. We refer to this phenomenon as the marriage unemployment gap. Despite
the dramatic demographic changes in the labor market over the last decades, this gap has been
remarkably stable both for men and women. Using a flow-decomposition exercise, we assess
which transition probabilities (across labor force states) are behind the marriage unemployment
gap. We find that, for men, the higher attachment to employment of married males is the main
driver of the gap. For females, we find that the participation margin plays a crucial role.
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1 Introduction

Over the last decades, the U.S. economy has experienced two major demographic and labor market

changes. One of these changes is the secular decline in the proportion of married individuals in the

labor force. The other is the dramatic increase in the employment rate of women, specially married

women1. In this paper, we document that, despite these changes, there exists a stable and sizeable

difference between the unemployment rate of married and single men2. In particular, married men

face a lower unemployment rate than single men. For women, we document the emergence of a

similar gap in the 1980s and its stabilisation since then. The emergence of the gap for women,

coincides with the rise in the employment rate of married females and its convergence with the

employment rate of single females. We name the phenomenon of lower unemployment rate for

married individuals the marriage unemployment gap.

We analyse monthly data from the Current Population Survey (CPS) and compute labor market

stocks and worker flows between employment, unemployment, and non-participation by marital

status and gender. We adjust the data for time aggregation, misclassification biases, and the

different observable characteristics of married and single individuals. Using a similar decomposition

method as in Shimer (2012), we assess which of the transitions are more relevant in accounting for

the unemployment rate differences between married and single individuals. We find that for males,

the higher employment exit probabilities exhibited by single males are the main determinant of the

gap. For females, we find that the participation margin also plays a fundamental role. Importantly,

we find that the contribution of these channels to the gap is stable over time.

This paper is related to different streams of the literature. Firstly, as in Shimer (2012), Elsby,

Hobijn, and Sahin (2015), or Choi, Janiak, and Villena-Roldán (2014) we assess the importance of

worker flows on labor market stocks. Secondly, this paper relates to the literature studying another

striking difference between labour market outcomes of married and single individuals, namely the

marriage wage premium (Antonovics and Town (2004) is one example of this literature). Finally,

our analysis aims to provide a rich set of stylised facts to the growing theoretical literature on

joint employment search, see Albrecht, Anderson, and Vroman (2010), Ek and Holmlund (2010),

1See Greenwood, Seshadri, and Yorukoglu (2005); Greenwood and Guner (2008), Attanasio, Low, and
Sánchez Marcos (2008), or Stevenson and Wolfers (2007) among many others.

2Throughout this paper, we define the married group as those workers who, in our dataset, claim to be married
and their spouse is present in the household at the time of the survey. In the single group, we pool never married,
separated, divorced, and widowed individuals.
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or Guler, Guvenen, and Violante (2012), among others.

2 Data

We use the monthly files from the Current Population Survey (CPS) as our main data source. Since

survey respondents are followed for up to four consecutive months, we use a standard age/sex/race

linking procedure to obtain longitudinal information on workers across months.3 We consider all

workers aged 16 and above (our results are robust to different age restrictions) between January

of 1976 and December of 2013. From the data, we compute the proportion of workers during each

month in three labor market states: employment (E), unemployment (U) and inactivity/out of

the labor force (O). We also compute monthly transition probabilities as the number of workers

who transit from one state {E,U,O} in month t to a subsequent state {E,U,O} in month t + 1,

divided by the total number of workers in the original state. Below, we discuss three adjustments

we perform on the data.

Controlling for observables. When comparing married and single individuals, some of the

differences in outcomes may be attributed to differences in the demographic composition of each

group. In order to control for these, we adjust our sample using a matching algorithm:4 we create

bins for observable characteristics (gender, race, age, census division, education, and the number of

children in the household), then, we eliminate bins that contain individuals from only one marital

status. We iterate over the coarseness of variable definitions (e.g., precison of education levels or

race categories) in the previous step, such that we do not eliminate more than 5% of the sample in

this elimination step. Finally, in each bin we perform a bootstrap-like replication of observations

at random, in order to equate the number of married and single individuals. In our final sample,

the demographic characteristics of the single and married group are exactly identical.

The benefit of this procedure is two-fold. First, it is entirely non-parametric, so it does not

impose any structure on the effect of observables on the variables of interest. Second, it allows

us to compute the level of all labour market outcomes we are interested in controlling for the

effect of observables. Note that any regression would only deliver the difference between married

and singles individuals for each variable of interest. In section B of the appendix, we show a

comparison between our method and a Probit regression.

3See Shimer (2012) for a description of the methodology.
4See Angrist (1998).
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Time aggregation and classification errors. The use of the data in its raw format (stocks and

transition probabilities) suffers from two well known issues: time aggregation bias and classification

errors. Time aggregation bias arises since we only observe individual information at fixed time

intervals (one month apart in the case of the CPS), and have no information of what occurs in the

meantime. For example, if we observe an individual who is unemployed in period t and then as

employed in period t + 1, we record an unemployment to employment (UE) transition. However,

intermediate transitions could have occurred during the weeks inside the month. For example, a

UE followed by EU and a final UE transition could be encompassed by the originally observed,

month-to-month UE transition. The two latter transitions are missed by the flow construction

method.5 In this paper we follow Shimer (2012) and Elsby, Hobijn, and Sahin (2015) and correct

for this bias using an eigenvalue-eigenvector decomposition technique.

Classification errors, on the other hand, are related to erroneous codification and/or reporting

of labor market states in surveys as the CPS. Since the distinction of whether one is looking

for a job or not might be fuzzy at the individual level, erroneous classification of individuals as

unemployed instead of inactive (and viceversa) might be significant. As noted by Abowd and Zellner

(1985) and Poterba and Summers (1986), transition probability estimates between U and O can be

especially affected by misclassification. In this paper, we are comparing unemployment rates and

labor market transitions for different sub-groups of the population, who have significantly different

levels of attachment to the labor force. Taking care of this classification error is thus crucial to

get a correct view of heterogeneity in unemployment rates and its sources. In what follows, we

apply a procedure suggested in Elsby, Hobijn, and Sahin (2015) which entails ”ironing” out cycles

between unemployment and inactivity. For this method, we make full use of the longitudinal aspect

of the CPS and merge four consecutive months of data for each worker (when possible). We then

recode “U” to “O” whenever the “U” state is deemed to be temporary and likely to be misclassified

(and vice versa). For example, an observed four-month individual employment history of the form

OUOO (a month out of the labor force, followed by a month unemployed, followed by two months

out of the labor force) is changed to OOOO. In the same way, we replace an observed UOUU

history with UUUU .6

5This was first noted by Darby, Haltiwanger, and Plant (1986).
6See Elsby, Hobijn, and Sahin (2015) for a complete list of employment histories subject to recoding.
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3 Stocks and Flows

Figures 1 and 2 show the employment to population E/(E + U +O), and the unemployment rate

U/(E+U), respectively. Both figures are based on our adjusted sample, and are divided by gender

and marital status.
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Figure 1: Employment rate by marital status. CPS 1976:1-2013:12. Corrected for classification error. Artificial
sample to control for observables (see main text). Series smoothed using a 12-month moving average. All individuals
aged 16 or more. Gray bars denote NBER recession dates.
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Figure 2: Unemployment rate by marital status. CPS 1976:1-2013:12. Corrected for classification error. Artificial
sample to control for observables (see main text). Series smoothed using a 12-month moving average. All individuals
aged 16 or more. Gray bars denote NBER recession dates.

The figures show that the employment rates have been stable in our sample, except for married

females: they experience a sharp increase in employment rates from the start of our sample (1976) to
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around the year 2000, time at which employment rates flatten for them. Note also that employment

rates are higher for married men compared to single males, while the opposite is true for females.

Finally, employment loses are stronger for males (of both marital states) during recessions, shown

in the figures as gray vertical bars, which represent National Bureau of Economic Research (NBER)

recession dates.

As for unemployment rates, both genders exhibit higher rates when one considers the single

sample as opposed to the married one. This is what we name the marriage unemployment gap.

The exception for this, is the case of females during the second half of the 70s, period when

unemployment rates by marital status are shown to be very close.

The stocks of employed, unemployed and inactive (thus employment and unemployment rates)

are closely linked to the flows that each worker experience. Below we show transition probabilities

for males and females, using our adjusted sample.
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Figure 3: Labor market transitions for males. CPS 1976:1-2013:12. Corrected for time aggregation bias and
classification error. Artificial sample to control for observables (see main text). Series smoothed using a 12-month
moving average. All individuals aged 16 or more. Gray bars denote NBER recession dates.
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Figure 4: Labor market transitions for females. CPS 1976:1-2013:12. Corrected for time aggregation bias and
classification error. Artificial sample to control for observables (see main text). Series smoothed using a 12-month
moving average. All individuals aged 16 or more. Gray bars denote NBER recession dates.
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Figure 3, shows transition probabilities between E, U and O for male workers, separated by

marital status, while figure 4 does the same for females. Notation XY denotes the probability of

going from labor market state X ∈ {E,U,O} to state Y ∈ {E,U,O}.

The figure for males shows that married male workers have a higher attachment to the labor

market, since job separations, both to unemployment and inactivity, are lower for them than for

singles. On the other hand, the married group has higher job finding rates out of unemployment,

while they tend to exit to inactivity from unemployment at lower rates than single workers. In

contrast, as seen in figure 4, transition probabilities for females are consistent with the idea that

married women have lower attachment to the labor force: more specifically, transitions EO and UO

are higher for married females than for single females, which points to the fact that married women

are more likely to exit the labor force than singles, both from employment and unemployment.

4 A Decomposition Exercise

To account for differences in unemployment rates by agents of different marital status, we perform

a similar decomposition exercise to Shimer (2012). We construct counterfactual unemployment

rates for singles using all the transition probabilities for this group, except for one which we replace

by the one corresponding to the married group. Hence, if the particular transition probability

is important to explain the marriage unemployment gap, the counterfactual unemployment rate

would be closer to the married rather than to the single unemployment rate.
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Figure 5: Counterfactual unemployment rates for single males, aged 16+, from 1976:1 to 2013:12
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Figure 6: Counterfactual unemployment rates for single females, aged 16+, from 1976:1 to 2013:12.

In figure 5 we present the exercise for male workers while in table 1 we compute the average

difference between the counterfactual (CF) single unemployment rate and the observed rate for
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the married population. For example, the first row of table 1 shows that when the single worker

population experiences the EU transition probability of its married counterpart, the resulting

unemployment gap between counterfactual singles and married workers is 1.36 percentage points;

in contrast, transition UO accounts very little in explaining the gap, since the gap is maximum in

the table (3.83 pp) and the single counterfactual line is almost identical to the observed single line in

figure 5d. Thus, single workers experience a comparatively high unemployment rate because of the

relatively high job losing rate (EU) they face compared to married workers. One interpretation of

these results is that (part of the) difference between married and singles males comes from different

match qualities in the jobs they find, which reflects on the observed durability of jobs and finally,

in differential unemployment rates.

Transition CF - Married

EU 1.36

EO 2.70

UE 2.53

UO 3.83

OE 3.38

OU 2.40

Table 1: Average difference (in %) between the counterfactual (CF) single unemployment rate (theoretical rate,

when the associated transition probability is replaced by that of the married group) and the observed unemployment

rate for married workers. Males.

Transition CF - Married

EU 0.05

EO 2.31

UE 0.46

UO 0.33

OE 0.41

OU 0.00

Table 2: Average difference (in %) between the counterfactual (CF) single unemployment rate (theoretical rate,

when the associated transition probability is replaced by that of the married group) and the observed unemployment

rate for married workers. Females.
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For female workers, transitions between employment and unemployment (EU and UE) are

relevant to explain the marriage unemployment gap, but the gap is almost entirely explained by

the difference between married and single females with respect to the OU transition, as observed

in table 2. Again, these results are in line with the idea that married females’ attachment to the

labor force is the one most mediated by the household, and that this group of the population is

the one most likely to make transitions in and out of the labor force. This is not the case for single

females nor males.

The simple flow decomposition exercise above shows which forces are behind the marriage

unemployment gap. The fact that these forces have been operating in a relatively stable manner

over our entire adjusted sample coupled with a stable downward trend in the fraction of workers

choosing to marry, hints at the importance of the economic forces inside a household to explain the

gap. However, to explain the existence of the marriage unemployment gap is out of the scope of

this paper.

5 Conclusions

In this paper we document different patters regarding worker flows and unemployment rates between

married and non-married individuals in the U.S. economy. Using monthly CPS data from 1976 to

2013, we show that the unemployment rate of married individuals is systematically lower than

for singles, both for males and females. This difference is persistent over time despite the notable

changes in the composition of the U.S. labor market: the increase of female labor force participation,

the convergence between the participation rate of single and married females, the slight decrease

of male’s participation, and the dramatic decrease of the proportion of married individuals in the

labor force.

We use monthly transitions across labor market states to perform a decomposition exercise that

allows use to identify the main channels driving the different unemployment rates between singles

and married. We find that for males, the higher employment exit probabilities exhibited by single

males are the main determinant of the gap. For females, we find that the participation margin also

plays a fundamental role. Importantly, we find that the contribution of these channels to the gap

is stable over time.
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Appendix
A Figures of Non-adjusted data
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Figure 7: Employment rate by marital status. CPS 1976:1-2013:12. Series smoothed using a 12-month moving
average. All individuals aged 16 or more. Gray bars denote NBER recession dates.
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Figure 8: Unemployment rate by marital status. CPS 1976:1-2013:12. Series smoothed using a 12-month moving
average. All individuals aged 16 or more. Gray bars denote NBER recession dates.
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Figure 9: Labor market transitions for males. CPS 1976:2-2013:12. Corrected for time aggregation bias. Series
smoothed using a 12-month moving average. All individuals aged 16 or more. Gray bars denote NBER recession
dates.
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Figure 10: Labor market transitions for females. CPS 1976:2-2013:12. Corrected for time aggregation bias. Series
smoothed using a 12-month moving average. All individuals aged 16 or more. Gray bars denote NBER recession
dates.
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B Our Method of Controlling for Observables vs. Marginal Effects Probit

In this section we compare our method to control for observables and the results from a Probit

regression. Figure 11 compares the difference between the unemployment rate of single and married

individuals in our artificial sample with the marginal effect of being single in the following Probit

model:7

U = Φ(β0 × single+ ~β1 × ~X + ε) (1)

where U is a dummy variable that takes value 1 if the individual is unemployed and 0 otherwise,

single is a dummy variable taking value 1 if the individual is not married and 0 otherwise, and the

vector ~X is the set of observable characteristics we use in the construction of our artificial sample.

In the artificial sample, both married and single individuals present the same observable char-

acteristics. Hence, the difference between the unemployment rate of single and married individuals

reflects the different probabilities of being unemployed conditional on observables. This is equiv-

alent to estimating the Probit model in equation 1 and computing the marginal effect of being

single (or married) controlling for observables. These results indicate that, both the exact match-

ing method we use to control for the effects of observables and using a Probit model to clean out

the effects of observables, deliver similar results. We choose to use exact matching because it does

not require to assume a particular parametric relationship between observables and labor market

outcomes.

7See Section ?? for a complete description of the procedure for constructing the artificial sample.

18



(a) Males
0

.0
1

.8
3

.5
5

.2
7

.0

1976 1980 1985 1990 1995 2000 2005 2010 2013

Artificial Data Marginal Effect

(b) Females

−
5

.0
−

2
.8

−
0

.5
1

.8
4

.0

1976 1980 1985 1990 1995 2000 2005 2010 2013

Artificial Data Marginal Effect

Figure 11: Unemployment rate. CPS 1976:1-2013:12. The solid line (Artificial Sample) represents the difference
between the unemployment rate of single and married individuals in our artificial sample. The dashed line (Marginal
Effects) is the marginal effect of being single computed from the estimation of the Probit model in equation 1. Series
smoothed using a 12-month moving average. All individuals aged 16 or more. Gray bars denote NBER recession
dates.
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